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Accurate guantum mechanical (QM) vibrationabtational partition functions for HOOD, {0,, H®OOH,

H,®0,, D*¥OOH, and HEOOD are determined using a realistic potential energy surface for temperatures
ranging from 300 to 2400 K by using the TT-FPI-ESPE path-integral Monte Carlo method. These data, together
with our prior results for HO,, provide benchmarks for testing approximate methods of estimating isotope
effects for systems with torsional motions. Harmonic approximations yield poor accuracy for these systems,
and although the well-known Pitzewinn (PG) approximation provides better results for absolute partition
functions, it yields the same results as the harmonic approximation for isotope effects because these are
intrinsically quantal phenomena. We present QM generalizations of the PG approximation that can provide
high accuracy for both isotope effects and absolute partition functions. These approximations can be
systematically improved until they approach the accurate result and converge rapidly. These methods can
also be used to obtain affordable estimates of zero-point energies from accurate partition forestens

those at relatively high temperatures.

1. Introduction within the accurate path-integral formalism, but use path
expansions that are only sufficient to accurately handle the low-
frequency motions, and then adjust the results in an approximate

fashion. The well-known PitzerGwinn (PG) metho#imay be

Obtaining accurate thermodynamic information about systems
with highly anharmonic motions such as torsions is a challenging
problem, and many methods have been propbsédo deal

with this difficulty. Even evaluating the efficacy of these
approximations is a challenging task because very few accurat

benchmarks exist to which results of these methods may be

compared. HO, is a particularly challenging system, where
methods such as second-order perturbation tHere/know?

to be inaccurate. In the present study, we extend our recent wor|
on H,O, by providing accurate quantum mechanical (QM)
partition functions for all six isotopologs that result from
replacing one or two atoms with their most common isotopic
replacements (D off0). The extent to which the approximate

methods reproduce the trends of isotopic substitution should

serve as a sensitive measure of their reliability.
Path-integral Monte Carlo methods provide an attractive

scheme for obtaining accurate QM partition functions. In these
methods, the low-frequency motions, which are usually those

with the highest degree of anharmonicity, are typically the
easiest to treat, both because these coordinates are easier
sample (i.e., have lower sampling variances) and because
smaller numberP, of path expansion parameters is needed in

these coordinates than for those with high-frequency motions.

Miller and Clary”?8 have advocated a “torsional path-integral
method” in which the difficult-to-treat high-frequency coordi-

€,

considered one of the simplest approximation methods within
this philosophy, because it employs a path-integral simulation
for all degrees of freedom (albeit with = 1, whereP = 1
corresponds to the classical limit) and adjusts this based on a
QM harmonic treatment. The PG method has already been

I(shown to be substantially more accurate than the harmonic

approximation for estimating absolute partition functidhs,
although it can do no better than the harmonic approximation
for isotope ratios. In this article we will consider quantum
mechanical generalizations of the PG scheme that employ path-
integral simulations withP > 1. These new approximations
converge to the accurate result in the limit of lageand we

will show that they converge much more rapidly than the
accurate path-integral methodis some cases yielding con-
verged results even fd® = 2 or 3. We also show how these
methods can be used to obtain affordable estimates of the

@ccurate zero-point energies.

®. Path-Integral Theory

The path-integral expression for the quantum mechanical
internal (vibrationat-rotational) partition function of a molecule
i§,’4,35

nates are treated as rigid, and this makes tractable the treatment

of a relatively large number of floppy coordinates. An alternative

approximation philosophy is to treat all the degrees of freedom
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whereh is Planck’s constant divided byz2 $D[x(s)] is the
integral over all closed pathgs) of time durationih whose
centroid position occurs at, § is 1kgT, kg is Boltzmann’'s

© 2005 American Chemical Society

Published on Web 10/14/2005



High-Precision Quantum Thermochemistry J. Phys. Chem. A, Vol. 109, No. 44, 20080093

constantT is temperatures is the distance along the path, and 112.456. The value of the partition function depends on the
A[x(9)] is the action integral of patk(s) and is given by the zero of energy, which is often placed at the ground state.
expression However, to calculate thermodynamic functions such as enthalpy
of reaction or free energy of reaction from a potential energy
AX(S)] = Oﬂh ds(ﬂ(%)z + V(x)) ) surface, it is necessary to also calculate o_r_include _the zero-
2\dt point energy, and therefore we calculate partition functions with
) ) the zero of energy at the equilibrium structure of the molecule,

wherey is the reduced mass of the system, affd) is the and this is the zero of energy used in the present article.
potential energy at point. The S subscript under the integral The numerical methods used for the TT-FPI calculations done
in eq 1 indicates that the integration is only over distinguishable j, this paper are the same as in our previous Wook HO,
elements of phase space. In the present application, we adopgnd we limit ourselves to a few remarks. The calculations are
an equivalent approach of integrating over all space and dividing performed in mass-scaled Jacobi coordinates, and the center-
by o™ the symmetry number of the systéf#’ of-mass motion is removed. The path centroids are importance

Fourier path-integral (FPI) methodg*3>%#>"represent the  sampled using our recently presented appreitiat employs
deviatio_ns of the paths fr_om free-particle paths by a Fou_rier independent ziggurat samplffg°for six chosen coordinates
expansion. The conventional approach to FPI calculations three Jacobi vector magnitudes and three Jacobi angles. Tight
truncates the infinite Fourier series koterms, and the results optimization of the domain-boundary parameters would yield
converge a®(1/K). A more efficient approach, introduced by negligible savings in computer time; therefore, conservative
Coalsor}* that also uses a finite expansion but additionally uses yalyes are used. The importance-function width parameters used
aK-dependent rescaling of the Fourier coefficients resul® in  gre the same as in our previous wétkand the importance-
= K+ 1 evenly spaced points on the paths being distributed as fynction center parameters are again taken to be the values at
they would be in an infinite-dimensional Fourier expansion. the equilibrium configuration. Because the coordinates used in
Coalsort* showed that if quadratures over such paths are the calculations depend on the masses, the numerical values of
evaluated using &-point trapezoidal rule, the method is the center parameters also vary. The final parameters used in
isomorphic to the widely used trapezoidal Trotter discretized calculating the converged path-integral values(@#'?} ©)
path-integral scheme. We refer to this as the trapezoidal Trotter¢, . ihe various isotopomers of B, are given in App_anptljix 1
FPI (TT-FPI) method. Partition function estimates obtained via ¢ Supporting Information. The classica? & 1) results for
TT-FPI converge a©(1/P?). We have recently showhthat any isotopolog may be obtained from the previous results for
using the TT-FPI approach allows one to construct lower-order H,0, via a simple mass-factor rescaling
path-integral estimates at essentially no additional cost and that
these estimates, calle@"l .., display regular convergence P (M=
that permits highly accurate extrapolation to the infiritémit. Ty N

The extrapolation of the path-integral results to the infilfite- Pt (n(mamomcmd)m(ma +m+m+nmy @
limit is carried out by the enhanced same-path extrapolation MMM A mmymam, ) \my +m) + ml + m
(ESPE) approact?, which involves fitting the TT-FPI partition

function values for the highest three available valueP ¢ive If desired, all vibrationatrotational partition functiong(T),
usePma pmax2 andPm@Y3, whereP™&ranged from 18 at high  in this paper could be converted to standard-state free energies,
T to 90 at 300 K) to the asymptotic behavior G3, by
Cy(T) | C4() . Qrrand T Qine(T)
M M=+ O Gf = ~RTIn===0 =0 (5)

whereCy(T) and C(T) are fitting parameters, an@ESPKT) is whereR is the gas const_anQ;’ranS('l')_ is the standard-state
the final extrapolated value of the partition function at temper- translational partition function, anlda is Avogadro’s number.

atureT. Similarly, other thermodynamic functions could be obtained
. . from Q(T) by standard formulas. However we shall carry out
3. Computational Details the comparisons in terms o®(T) rather thanGS or other

The potential energy surface (PES) used for the present sethermodynamic functions.
of calculations is the second of the two surfaces presented by
Koput, Carter, and Handy (i.e., the fit presented in Table 3 of 4. Approximation Methods
their papei3 which is the same surface that was used for their . S . .
. ) . . 4. A. Harmonic Approximation. The harmonic oscillator-
eigenvalue calculations). This PES is the same as the one used . L L .
. . - Separable rotation approximation to the vibratierraitational
in our previous studd of H,O,. The functional form used for o S
e . partition function is
this fit does not account for the full permutational symmetry of
the molecule; it is symmetric with respect to the exchange of the . _BEEOAHO 6
two OH groups, but not with respect to exchanges of just the Q=Que Q 6)
two H atoms, nor with respect to exchanges of just the two O
atoms. The symmetry numbe#™for H,O,, D,O,, and H'80,
is 2 and for HOOD, HOOH, D*¥OO0H, and H80OD is 1.
The masses of H, D, O, antfO are assumed to be
1.00782503, 2.01410178, 15.9949146, and 17.999160 amu, F 1
respectively. The zero of energy is at the minimum of the QHOZ rl— (7)
potential, which occurs for the configuration witRon = me11 — @ MPom
0.96265 A (whereR, is the distance fronx to y), Roo =
1.45248 A, HOO angles of 99.906and a dihedral angle of  wm is the harmonic vibrational frequency of mode F is the

where Qo is the rotational partition functionQH is the
harmonic oscillator (HO) approximation with the zero of energy
temporarily at the ground state, given by
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TABLE 1: Calculated Fundamentals and Harmonic Normal-Mode Frequencies for H1800H, H,'%0,, HOOD, D800H,
HJ‘SOOD, and D,0O,

H0O0H H,180, HOOD D'¥OOH HO0D D,0,
mode harme¢ harme¢ fundd harme¢ fundd harme¢ harme¢ harme¢ fundd
V1 3795.6 3795.1 3611.0 2774.9 2675.2 2757.0 2774.9 2772.6 2676.3
Vv 1434.2 1431.1 1391.5 1388.0 1349.5 1385.2 1384.6 1052.8 1027.6
V3 885.2 859.0 825.7 909.6 876.5 883.3 884.2 908.6 877.4
V4 381.2 380.4 369.7 334.7 313.9 333.9 333.9 279.4 254.2
Vs 3808.5 3796.2 3613.5 3808.5 3622.9 3808.5 3795.6 2777.1 2675.6
Ve 1326.4 1322.8 1262.5 1014.1 982.3 1010.3 1009.7 983.8 948.2

a As usual, we tabulate,/2zc in cm™ rather thanw, in s71. ® The vibrational modes are symmetrig) and antisymmetricis) OH stretches,
symmetric {2) and antisymmetricig) HOO bends, symmetric OO stretaly), and the HOOH torsiong). ¢ The harmonic normal-mode frequencies
as calculated using the POLYRATE v9.3 progréimd The calculated fundamentals as obtained by Koput, Carter, and Handy using i@gir H
potential energy surfacé.

number of vibrational modes (six for all applications in the TABLE 2: Comparison of Zero-Point Energies® from
. HO - . . Various Sources
present article), andE,~ is the harmonic zero-point energy

(ZPE) given by system harmonic from fundamentals  accurate
H.0; 5838.4 5580.1 5726°1
1 F HSO0H 5815.5 - 5704.
EC="hSY o, (8) H21%0, 5792.3 5537.0 568107
2 &= HOOD 5114.9 4910.2 5028.8
D*0O0H 5089.0 - 5003.5
. L . . H800D 5091.5 - 5006.0
Another approximation is achieved by replacing the tG{fﬁ D,0, 43872 42297 432602

in eq 6 with the accurate ZPE. This method is referred to as
HO-Z, the zero-point-corrected harmonic oscillator approxima- 2In cm™. ® From the variational results of ref 61Present estimate.
tion.

Note that the standard HO and classical (CHO) approxima-
tions are defined to include the harmonic approximation at only
the one deepest minimum of the potential; this is a reasonable
approximation for molecules such as ethane where, even thoug
the torsion has three minima, they are quantum mechanicallyf
indistinguishable, and thus the quantum harmonic oscillator
approximation correctly includes only one of them, but it is Foq
not reasonable for cases such as hydrogen peroxide where there QCHO = rl_ (11)
is more than one contributing minimum. In such cases, a m=1npw .,
multiconformer (MC)-harmonic oscillator (HO)-rigid rotator

(RR) approximation will be employed It is interesting to also consider a nonstandard version of the

PG approximation. In this method, we employ the accurate value
QUCETHORR — Z exp(—pU,) QO RR (9) of the ZPE, calledE,, yielding
1

whereQcw is the anharmonic classical vibratiorabtational
partition function, which we calculate by settifg= 1 in the
ath-integral algorithm, an@CHO is the classical mechanical
armonic oscillator approximation to the vibrational partition
unction, given by

~HO
whereU; denotes the difference between the energy of minimum Q= e_ﬁEOQCM( QCHO) (12)
i and the global minimum. (One could also define a classical Q

version (MC'CHQTRR_)') The sum in eq 9 includes only .o approximation is interesting becau&gcan be calculated
distinguishable minima; thus, for example, ethane and methanolby quantum Monte Carlo methdd$? (or approximated in a
Wﬁ)ﬂd E;ths f:gviﬁ doigtli):\OSies ;ZLTebS?fféife;OtexLOqug tEhue Iml ethyl variety of ways). Tables 1 and 2 give the harmonic vibrational
group 9 ' frequencies and zero-point energies needed for the approximate

\évigg:? Sii\r:?abﬁzrﬁnti?;??t#e] egrs.;gzr:(fi‘:omgrsli?ﬁrt]ﬁ;gteo“rgion calculations and compares them to fundam@ataPlfrequen-
9 y cies. (The frequencies for J®, and HOOD are in good

coordinate, so the MC-HO-RR partition function is a factor of agreement with availalfes3 experiments.)

2 larger than the HO-RR partition function. When more than one minimum contributes significantly to
mgchheaa?g[llosn;rlnrrﬁglrtif?of;nr(i:gtjlic(;nrl)st(?rv?égtz?)[I)rr]otzi(rancgtji?)rr]]tuzg the partition function, multiconformer analogues of eqs 10 and
. ’ ' . L ’ 12 could be used, whef@"° is replaced by a weighted sum of
discussed elsewhefé. (Alternative approximations to the N . ST L
rotational partition func(tion change tﬁg result by only 2% or guantum harmonic oscillators for all the distinguishable minima
less, as shown in Appendix 2 of the Supporting Information.) andQCHOis replaced by an analogous sum of classical partition

4 ’ B. The Conver?t?onal Pitzer—GWinr?F,)Appr(?ximation " functions. Note that the latter sum is not a strictly classical
Thé Pi.tzer—Gwinrﬁ'13v14v16v19(PG) approximation can be dsed expression because the number of terms in the sum is governed

. . . . by quantum mechanical consequences of symmetry. If all the
with the harmonic estimate of the zero-point energy (ZPE) to - L : : _ :

. ! . contributing minima have identic"°-RR, as in the present

approximate the value of the anharmonic quantum mechanlcalset of applications, the single- and multiconformer formulas

vibrational partition function would yield identical results, so we will not consider multicon-

o ~HO former PG approximations further here.
Q"¢ = e = Qcm(Q_) (10) 4. C. Generalized Pitzer-Gwinn Approximations. We will
QCHO consider a very general extension of the Pitz8winn ap-
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TABLE 3: TT-FPI-ESPE Partition Functions and 2 ¢ Statistical Uncertainties for Various Temperatures

system 300 K 400 K 600 K 800 K
H8O0OH (7.018+ 0.062)x 107° (1.2081+ 0.0013)x 10°° (3.0300+ 0.0025)x 1072 2.11323+ 0.00091
H,1%0, (4.157+ 0.037)x 10°° (6.9690+ 0.0075)x 107 (1.7078+ 0.0014)x 1072 1.18068+ 0.00052
HOOD (2.322+ 0.011)x 1077 (1.8128+ 0.0013)x 1074 0.212204+ 0.00014 10.2992 0.0037
D*OO0OH (2.756+ 0.013)x 1077 (2.0974+ 0.0015)x 104 (2.3934+ 0.0015)x 10t 11.5059+ 0.0041
H800D (2.735£ 0.013)x 1077 (2.0868+ 0.0015)x 104 (2.3870+ 0.0015)x 10 11.4862+ 0.0041
DO, (4.509+ 0.011)x 1076 (1.56538+ 0.00070)x 1073 0.83431+ 0.00042 27.971% 0.0079
system 1000 K 1500 K 2400 K
H®OOH 33.990+ 0.026 2433.42 1.55 165350+ 170
H,'%0, 18.899+ 0.015 1346.19+ 0.86 91189+ 84
HOOD 135.071t 0.091 7603.4H 4.04 449545+ 368
D*OOH 150.06+ 0.10 8396.14+ 4.63 493864+ 595
H%00D 149.91+ 0.10 8389.0A4.38 494716k 423
D20, 297.774+0.17 13102.6E 6.41 671681 624
proximation of the form If we use a reference potential of harmonic oscillators with
frequenciesy evaluated from a Hessian at the global minimum
GPGP] 1 Q""f'P=°°(T) P of the potential, we shall refer to the results of eq 13 simply as
Q M= Qref,P(T) Q"M (13) GPGP]. However, because the values of partition functions are

where GPG denotes generalized Pitz€winn, QIFI(T) is the
path-integral partition function for some finifg and Qe"~(T)

and QefP==(T) are the accurate quantum mechanical partition
functions of some reference potential for this same value of
and for the infiniteP limit, respectively. If we choose our
reference potential to be a sum of one-dimensional harmonic
oscillators and sé® = 1, we obtain the original PG approxima-
tion, and for any reasonable choice of reference potential, eq
13 converges to the accurate resultPas increased. For the
rest of this paper, we will restrict consideration to reference

very sensitive to the zero-point energy, we may be able to
achieve higher accuracy for low, if the reference function
has a zero-point energy that is as close as possible to that of
the accurate potential. One obvious way to achieve this
(assuming the accurate ZPE is known) is simply to scale all of
the harmonic frequencies using a single scale factor, i.e.,

z_Eo

o = Eg'owi (29)

We will refer to this method as GPG-2] where Z indicates

potentials that are sums of harmonic oscillator functions, but frequency scaling based on the accurate zero-point energy.
we pause to remark that more general reference potentials, which 4. p_ Other Approximations. If we are not fortunate enough

partially account either for anharmonicity and/or intermode
coupling, may prove to be more effective and would be a good
subject for future investigation.

The finite quantum partition function for a harmonic
oscillator can be expressed®as

gorm=-t" (14)
ff—1
where
f=1+%2+(§)x/4+R2 (15)
and
R="0 (16)

The finiteP quantum partition function for a harmonic oscillator
can also be expressed®as

QHO,P(T) _ 1
[(V1+ o+ o) — (V14 a®— )] an
where
_hpw
o= W (18)

to know the accurate ZPE, we can use a known accurate value
of Q(T,) at some temperatufk to estimate an optimal scaling
factor. This is done by numerically finding a scaling facter
that makes eq 13 hold exactly for= T,. In the T, — O limit,

the optimal frequency-scaling factor will equEb/E'Jo, and
even at fairly high temperatures it will be close to this value.
Because the path-integral calculations at modeFatalues are
quite affordable, performing a well converged calculation at one
such temperature to estimate an approximate ZPE for use in
GPGJP] calculations at lower temperatures can provide a
considerable reduction in computational cost. This option is an
interesting one for future study.

If one knows some of the higher-energy levels, one can define
mixed methods that take advantage of this. This is illustrated
in detail in Appendix 3 of the Supporting Information where
we show how one can do better if one knows all the accurate
fundamentals.

5. Results

5. A. Harmonic and Conventional PG Methods.Table 3
contains for several temperatures the valueQ®i*XT) and
the 2 statistical uncertainties, where denotes standard
deviation, for the isotopomers considered here. (Intermediate
results of these calculations are presented in Appendix 1 of the
Supporting Information.) The small magnitudes of the 2
statistical uncertainties given in Table 1 result partly from the
highly effective importance-sampling schetheand partly
because the calculations used a large numbex [(D)—(2 x
10®)] of Monte Carlo samples.

Table 4 compares partition functions calculated with the MC-
HO-RR approximation (with and without the accurate zero-point
energy correction) and the two variants of the conventional PG
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TABLE 4: Ratios of Approximate Partition Functions to the is only off by 1% at 300 K. At 2400 K, there is a similar trend

Accurate Path-Integral Results for Six Isotopologs at although the errors are smaller and range from 0.2% to 2%.
Various Temperatures The HO-Z isotope effects are substantially more accurate than
T(K) system HO-RR MC-HO-RR MC-HO-Z-RR PG PG-Z  those of the HO calculations with the data for species with zero

300 HO, 0.269 0.540 0.925 0.623 1.069 D atoms agreeing with accurate results within the statistical
300 HBOOH 0.271 0.543 0.926 0.627 1.070 uncertainties, and results for species with one and two D atoms
300 H'¥O, 0.272  0.543 0.923  0.627 1.066  peing accurate to within 1.7% and 3.1%, respectively.

300 HOOD 0.301 0.601 0.908 0.694 1.048 . . . . .

300 DMOOH 0.301 0.603 0.909 0.696 1.051 B. Generalized Pitzer-Gwinn Approximation Results. In

300 HBOOD 0.302 0.603 0.909 0.696 1.049 Table 6, we consider the convergence with respeét ¢d the

300 DO 0.335 0.669 0.897 0.772 1.035 GPG-Z|P] scheme for partition functions of 4@, at 300 K—

800 &% 0.363 0.727 0.890 0.852 1.042  the |owest temperature and the lightest isotopomer considered
800 1 OH 0.364 0.727 0.889 0.853 1.042 here, and hence the hardest case to converge. The ESPE
800 H0; 0.364 0.728 0.888 0.856 1.041 . . .

800 HOOD 0378 0.755 0.882 0.884 1.033 Calculations were done witR = 30, 45, and 90 and involved
800 D¥OOH 0.377 0.755 0.881 0.887 1.032 an extrapolation correction of about 3.2%. The GP|Gjalcula-

800 HSBOOD 0.377 0.756 0.881 0.887 1.032 tions are observed to converge rapidly and monotonically from
2280 Ezlzgz 8-383 8-;8‘71 8-2;523 8-8;2 i-ggg above, with thé® = 30 value already agreeing with the accurate
2400 HSOOH 0.398 0.795 0.850 0.958 1.020 rgsult Wfl;['hlfr]] the Ttanfstlcal ung:ertamt;eg. The GF(;CP-]Zia::cula

2400 10, 0.398 0.795 0.850 0953 1019 tions, which employ frequencies scaled to reproduce the accurate
2400 HOOD  0.402 0.804 0.847 0.964 1.016 ZPE of 5726.1 cmi, display nonmonotonic convergence but
2400 DOOH 0.403 0.805 0.847 0.966 1.016 provide outstanding accuracy for very low—2) P values.
2400 H%OOD 0.402 0.804 0.846 0.964 1.015 Fjgure 1 compares the correction factors, i@ P==I(T)/

2400 DO, 0.406 0.813 0.843 0.973 1.010

QefPI(T), plotted as a ratio of the accurate value, for the two
choices of reference potentials. The asymptotic convergence rate

approximation to the converged path-integral values. The 4 ihe QIPI(T) with increasingP is well characterized by using

MC-HO-RR approximation yields results that are systematically {he ynscaled harmonic frequencies, presumably because these
much too low, with errors ranging from 19% to 46%. The characterize well the contribution from the stiffest, and thus
MC-HO-Z-RR approximation has errors ranging from 7% to  gjowest converging, region of the surface. The accurate ZPE is
16%. The results for the PG-Z values are quite good, with errors 5paut 112.3 cmt below the harmonic value, due to anharmo-
of only 1% to 2% at 2400 K and 3.5% to 7% at 300 K. The ncity effects that converge slowly witR; thus, at lowP the
errors are inversely proportional to the number of D atoms and, GpGpp| scheme significantly underestimates the accurate parti-
for a given number of D atoms, are inversely proportional to tjon function. By rescaling the frequencies to reproduce the
the number ot%0 atoms; this is consistent with the expectation accurate ZPE, the GPG[scheme yields dramatically better
of decreased quantum effects for heavier isotopes. The PGyegylts for lowP values, withP = 1 giving errors of only~3%
results are systematically too low (as expected because thegnd theP = 3, 4, and 5 results, where ti@P)(T) calculations
harmonic ZPE overestimates the true ZPE), with errors ranging begin to accurate|y treat the intermode Coup"ng and low-
from 2.7% for DO, at 2400 K to 37.7% for KD, at 300 K, frequency motions not represented by the reference potential,
but the method still performs significantly better than the all being accurate to within 1%. For intermediate value®of
MC-HO-RR method. the path-integral calculations begin to account for significant
We see that even where the errors of the approximate partitionportions of the anharmonicity in the high-frequency motions
functions are large, they are often systematic; thus, it is that the ZPE correction also approximately corrects for, and
interesting to examine the isotope effects. Table 5 shows valuesthis double correction results in the GPGZEcheme predicting
for the isotope effect, that is, the ratio Qffor H,O, to Q for partition function estimates that are too high by as much as
some isotopic moleculé¥,0,/Qisotopically substituted specirsBECAUSE ~3—4%. For largerP values, both schemes converge to the
the PG approximation only includes quantum effects at the accurate result, but the GP[scheme converges faster and is
harmonic level, and isotope effects are an inherently QM more accurate foP > 10.
property, it yields isotope ratios that are identical to those of In Tables 7 and 8, we consider partition functions feOK
the HO-RR approximation. This may not be immediately and DO, calculated with the GPG-B] scheme forP in the
obvious, but it can be readily shown by using eq 4 and the range of 4. The full range of temperatures is studied, and

Teller—Redlich product rul&66:67 mean unsigned deviations (MUDs) between the accurate and
approximate results over these seven temperatures are tabulated.

172 32 TheP = 1 results have an accuracy comparable to those of the

F o, Zm |X|y|Z #atomg Y, PG-Z scheme and have MUDs from the accurate results of about

|—'_= L |—| — (20) 3—4%. Moving fromP = 1 to P = 2 results in the MUDs
=loj - "'l it lm being reduced by more than a factor of 2, to within-1230%.

Z ' TheP = 3 results are dramatically better than the= 2 results,
with the T = 800 K data now being converged to within
statistical uncertainties, having MUDs ranging from-8049%.

wherely, ly, andl; are the principle moments of inertia. The The P = 4 results have MUDs of 0-20.4% and provide
table includes the harmonic approximation, the HO-Z ap- excellent accuracy at all temperatures. As already mentioned,
proximation, and the accurate path-integral results. It is interest- further increases iR can result in lower accuracy as the accurate
ing to see that the harmonic isotope effect for any species with path-integrals begin to converge anharmonic contributions that
one deuterium atom is off by 1% at 300 K. The isotope  are already heuristically accounted for by the frequency scaling
effect for the only species containing two deuterium atoms is to reproduce the accurate ZPE, but in the |d@Pdienit the results

off by 19% at 300 K, whereas any species without deuterium converge to the accurate values.
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TABLE 5: Accurate Path-Integral Results for Qu,0,/Qisotopically substituted species@Nd Percentage Errors in These Isotope Effects
When They Are Calculated by the HO and HO-Z Approximations at Various Temperatures

T(K) H1800H H,180, HOOD D*¥OO0H H*¥OO0D D0,
Accurate
300 4.27¢1) 7.20¢-1) 1.29¢2) 1.09¢2) 1.1062) 6.64(4)
400 4.37¢1) 7.57¢1) 2.91¢2) 2.51(2) 2.53(2) 3.373)
600 4.46¢1) 7.91¢1) 6.36(-2) 5.64(2) 5.66(-2) 1.62¢2)
800 4.49¢1) 8.04(-1) 9.22(-2) 8.25(-2) 8.27(-2) 3.40(-2)
1000 4.52¢1) 8.12(-1) 1.14¢1) 1.02¢1) 1.02¢1) 5.16(-2)
1500 4.54¢1) 8.21¢1) 1.45¢1) 1.32¢1) 1.32¢1) 8.43(2)
2400 4.55¢1) 8.24(-1) 1.67¢1) 1.52¢1) 1.52¢1) 1.12¢1)
% Error in HO

300 —-0.6 -0.6 -10.2 —-10.6 —10.6 —-19.4

400 -0.4 —-0.5 -7.9 —-8.0 —-8.0 —-14.8

600 —-0.2 —-0.4 -5.0 —5.2 —-5.2 -9.9

800 -0.1 —-0.2 —-3.8 —-3.7 —-3.8 -7.3
1000 —-0.1 —-0.2 -3.0 -3.0 —-3.1 —5.8
1500 -0.1 -0.1 -1.9 -1.9 -2.0 -3.7
2400 0.2 0.2 -0.9 -1.0 -0.9 —-2.0

% Error in HO-Z

300 -0.2 0.2 1.8 1.6 1.7 3.1
400 —-0.1 0.1 1.2 1.3 1.3 2.4
600 0.0 0.0 1.1 1.1 1.1 1.9
800 0.1 0.1 0.9 1.0 0.9 1.7
1000 0.0 0.1 0.7 0.8 0.7 1.4
1500 0.0 0.1 0.6 0.7 0.6 1.1
2400 0.2 0.3 0.7 0.6 0.7 1.1

aPowers of 10 are in parentheses.

TABLE 6: Accurate Path-Integral and Generalized PG

TABLE 8: Ratios of GPG-Z[P] Partition Functions for D ,0,
Path-Integral Results with Two Choices of the Reference

to the Accurate Results

Potential for the H,O, Partition Function at T = 300 K2

T GPG-Z[1] GPG-Z[2] GPG-Z[3] GPG-Z[4]
Pl GPGP] GPG-Z[P]
P QUM LM LM 300 0.959 0.974 0.986 0.998
1 1.903(-2)° 1.866(-9) 2.869(-9) 400 0.961 0.979 0.992 1.002
2 1.563(-4) 2.046(-9) 2.906(-9) 600 0.965 0.986 0.998 1.003
3 9.423(-6) 2.188(-9) 2.926(-9) 800 0.968 0.990 0.999 1.002
4 1.486(-6) 2.321(-9) 2.961(-9) 1000 0.971 0.992 0.999 1.000
5 4.055(-7) 2.325(-9) 2.983(-9) 1500 0.975 0.994 0.998 0.999
6 1.588(-7) 2.544(-9) 3.032(-9) 2400 0.981 0.995 0.998 0.999
7 7.824(-8) 2.629(-9) 3.055(-9) MuDa 0.031 0.013 0.004 0.002
8 4.522¢8 2.683¢9 3.055¢9 . L .
9 2.971?8% 2.750?9; 3.077(693 aMean unsigned deviation from unity.
10 2.123(-8) 2.795(-9) 3.084(-9) 108
15 8.259(-9) 2.933(-9) 3.095(-9) o BTN ' '
20 5.510(-9) 2.973(-9) 3.074(-9) B &0 O
30 3.984(-9) 2.991(-9) 3.039(-9) 8 o0l & Qg ]
45 3.409(-9) 2.993(-9) 3.015(-9) 8 "Vl e T
90 3.092(-9) 2.992(-9) 2.997(-9) S L »
aThe converged result (obtained from an ESPE calculation) is (2.995 ‘E 0.95 ‘ E
+0.013)* 107°. P Powers of 10 are in parentheses. % ¢
[}
TABLE 7: Ratios of GPG-Z[P] Partition Functions for g 090 ' —e -harmonic ) g
H,0, to the Accurate Results P ’ o rescaled harmonic
T GPG-Z[l] GPG-Z[2] GPG-Z[3] GPG-Z[4] g sl ® ]
300 0.958 0.970 0.977 0.989 g i
400 0.954 0.968 0.980 0.993 3 |
600 0.955 0.974 0.990 1.002 0.80 L . L L
800 0.956 0.981 0.997 1.004 0 10 20 30 40 50
1000 0.957 0.984 0.998 1.002 P
1500 0.963 0.991 0.997 1.001 Figure 1. Ratio of the correction factorg®™==/Q'?, to the accurate
2400 0.971 0.994 0.999 1.000 values for the GPG] (harmonic reference potential) and GPGRE|
MuUD?2 0.041 0.020 0.009 0.004

(scaled harmonic reference potential) schemes as a functiBrabT
= 300 K.
have MUDs of 1% or below. The results fBr= 2—4 are all
very close to the ESPE benchmarks.
In Table 10, we consider estimates of the accurate ZPE of

aMean unsigned deviation from unity.

In Table 9, we consider the,/D,0, isotope effect, which

is the hardest test case, calculated using the GREsgheme 1y 0, obtained using various values BandP using the GPG-
for Pin the range of +4. As in the case of the harmonic results,  z[p] scheme. Specifically, we determine the ZPE we would
the isotope effects benefit from cancellation of systematic errors need to scale the harmonic frequencies for the GPR}Zithod

in the absolute partition functions and even fhe= 1 results to reproduce th&FSPRT) result for a given value of andP.
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TABLE 9: Ratios of GPG-Z[P] H,0,/D,0, Isotope Ratios to
the Accurate Results

T GPG-Z[l] GPG-Z[2] GPG-Z[3] GPG-Z[4]
300 0.998 0.997 0.991 0.990
400 0.993 0.989 0.987 0.991
600 0.990 0.988 0.992 0.999
800 0.988 0.991 0.998 1.002
1000 0.986 0.992 1.000 1.002
1500 0.987 0.996 0.999 1.002
2400 0.990 0.999 1.001 1.001
MUD?= 0.010 0.007 0.005 0.004

aMean unsigned deviation from unity.

TABLE 10: Approximate ZPE Estimates Obtained from the
GPG-Z[P] Scheme for HO,?

T P=1 P=2 P=3 P=4

300 5717.2£1.2 5720522 5722.3:3.7 5726.43.9
400 57115:05 5715.3-0.8 5719.4£1.3 5727.4-2.0
600 5700.0:0.7 5707.7-1.4 5720.6+2.2 5737.14+3.2
800 5687.0:0.6 5702.9:1.4 5725.7+2.2 5749.0+ 3.2
1000 5671.6-1.7 5694.8:3.8 5726.9-6.4 5749.5+9.8
1500 5629.5-2.9 5678.6:7.0 5706.6-14 5742+ 21
2400 5541.6:95 5634+30 5691+ 56 5734491

aThe accurate and harmonic ZPEs are 5726.1 and 5838:4, cm
respectively.

We provide uncertainty estimates by considering the two cases
where theQESPRT) and QIP)(T) values are shifted in opposite
directions by their 2 statistical uncertainties. A§ — 0, the
results will all converge to the accurate ZPE.RAs increased,

for finite T, the ZPE estimates all increase and presumably
become close to the harmonic ZPE, but for small valueB, of
the values will lie closer to the accurate ZPE for the reasons
already discussed above. For the present sydtem 3 yields

Lynch et al.

result by increasing the numbé, of path expansion parameters
(discretized points in the present set of calculations) used. Those
schemes that account for the zero-point energy (ZPE) accurately
yield well-converged results witR in the range of 24 even

at the lowest temperatures considered. When no ZPE estimates
are available, and only the harmonic reference potential is
considered, the GPB[ scheme still converges to the accurate
result much more rapidly than the TT-FPI calculations do. These
methods can also be used to get reasonable and affordable
approximations of the accurate zero-point energy. More refined
reference potentials than the simple harmonic ones considered
here may prove substantially more effective for both the
calculation of accurate partition functions and ZPE estimates;
this is an enticing topic for future research.

In addition to the tests reported in this paper, the converged
results presented here should be useful as benchmarks for testing
all kinds of future approximations. They should be especially
useful because of the high precision and wide temperature range
and because there are so few converged partition function
calculations availabfé for real molecules with four or more
atoms; in fact, this paper increases the number of cases from
two39-31to eight.
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ZPE estimates are quite good and may prove useful for use in
GPG-Z[P] calculations at lower temperature (where the calcula-
tions are significantly more expensive) if more accurate means
of estimating the ZPE are not feasible.

6. Conclusions

This paper presents converged accurate quantal rovibrational

partition functions for six isotopically substituted hydrogen
peroxides. The calculations are carried out by the TT-FPI-ESPE
path-integral method, and the 2tatistical errors are only about
0.1% from 400 to 2400 K. At the lowest temperature calculated
(300 K), where the calculations are the most difficult, the
statistical error is no more than 0.9% for all species examined
here.

These well-converged results allow us to compare ap-
proximate methods such as the harmonic oscillator and Pitzer
Gwinn (PG) methods. At 300 K, we find that the error for the

w
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