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Accurate quantum mechanical (QM) vibrational-rotational partition functions for HOOD, D2O2, H18OOH,
H2

18O2, D18OOH, and H18OOD are determined using a realistic potential energy surface for temperatures
ranging from 300 to 2400 K by using the TT-FPI-ESPE path-integral Monte Carlo method. These data, together
with our prior results for H2O2, provide benchmarks for testing approximate methods of estimating isotope
effects for systems with torsional motions. Harmonic approximations yield poor accuracy for these systems,
and although the well-known Pitzer-Gwinn (PG) approximation provides better results for absolute partition
functions, it yields the same results as the harmonic approximation for isotope effects because these are
intrinsically quantal phenomena. We present QM generalizations of the PG approximation that can provide
high accuracy for both isotope effects and absolute partition functions. These approximations can be
systematically improved until they approach the accurate result and converge rapidly. These methods can
also be used to obtain affordable estimates of zero-point energies from accurate partition functionsseven
those at relatively high temperatures.

1. Introduction

Obtaining accurate thermodynamic information about systems
with highly anharmonic motions such as torsions is a challenging
problem, and many methods have been proposed1-32 to deal
with this difficulty. Even evaluating the efficacy of these
approximations is a challenging task because very few accurate
benchmarks exist to which results of these methods may be
compared. H2O2 is a particularly challenging system, where
methods such as second-order perturbation theory4 are known33

to be inaccurate. In the present study, we extend our recent work
on H2O2 by providing accurate quantum mechanical (QM)
partition functions for all six isotopologs that result from
replacing one or two atoms with their most common isotopic
replacements (D or18O). The extent to which the approximate
methods reproduce the trends of isotopic substitution should
serve as a sensitive measure of their reliability.

Path-integral Monte Carlo methods provide an attractive
scheme for obtaining accurate QM partition functions. In these
methods, the low-frequency motions, which are usually those
with the highest degree of anharmonicity, are typically the
easiest to treat, both because these coordinates are easier to
sample (i.e., have lower sampling variances) and because a
smaller number,P, of path expansion parameters is needed in
these coordinates than for those with high-frequency motions.
Miller and Clary27,28 have advocated a “torsional path-integral
method” in which the difficult-to-treat high-frequency coordi-
nates are treated as rigid, and this makes tractable the treatment
of a relatively large number of floppy coordinates. An alternative
approximation philosophy is to treat all the degrees of freedom

within the accurate path-integral formalism, but use path
expansions that are only sufficient to accurately handle the low-
frequency motions, and then adjust the results in an approximate
fashion. The well-known Pitzer-Gwinn (PG) method3 may be
considered one of the simplest approximation methods within
this philosophy, because it employs a path-integral simulation
for all degrees of freedom (albeit withP ) 1, whereP ) 1
corresponds to the classical limit) and adjusts this based on a
QM harmonic treatment. The PG method has already been
shown to be substantially more accurate than the harmonic
approximation for estimating absolute partition functions,14

although it can do no better than the harmonic approximation
for isotope ratios. In this article we will consider quantum
mechanical generalizations of the PG scheme that employ path-
integral simulations withP > 1. These new approximations
converge to the accurate result in the limit of largeP, and we
will show that they converge much more rapidly than the
accurate path-integral methodssin some cases yielding con-
verged results even forP ) 2 or 3. We also show how these
methods can be used to obtain affordable estimates of the
accurate zero-point energies.

2. Path-Integral Theory

The path-integral expression for the quantum mechanical
internal (vibrational-rotational) partition function of a molecule
is34,35

where p is Planck’s constant divided by 2π, ID[x(s)] is the
integral over all closed pathsx(s) of time durationiâp whose
centroid position occurs atx, â is 1/kBT, kB is Boltzmann’s
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Q(T) ) ∫S
dxID[x(s)] exp(- 1

p
A[x(s)]) (1)
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constant,T is temperature,s is the distance along the path, and
A[x(s)] is the action integral of pathx(s) and is given by the
expression

where µ is the reduced mass of the system, andV(x) is the
potential energy at pointx. TheS subscript under the integral
in eq 1 indicates that the integration is only over distinguishable
elements of phase space. In the present application, we adopt
an equivalent approach of integrating over all space and dividing
by σsym, the symmetry number of the system.36,37

Fourier path-integral (FPI) methods31,34,35,38-57 represent the
deviations of the paths from free-particle paths by a Fourier
expansion. The conventional approach to FPI calculations
truncates the infinite Fourier series toK terms, and the results
converge asO(1/K). A more efficient approach, introduced by
Coalson,41 that also uses a finite expansion but additionally uses
a K-dependent rescaling of the Fourier coefficients results inP
) K + 1 evenly spaced points on the paths being distributed as
they would be in an infinite-dimensional Fourier expansion.
Coalson41 showed that if quadratures over such paths are
evaluated using aP-point trapezoidal rule, the method is
isomorphic to the widely used trapezoidal Trotter discretized
path-integral scheme. We refer to this as the trapezoidal Trotter
FPI (TT-FPI) method. Partition function estimates obtained via
TT-FPI converge asO(1/P2). We have recently shown58 that
using the TT-FPI approach allows one to construct lower-order
path-integral estimates at essentially no additional cost and that
these estimates, calledQTT-FPI

[P] , display regular convergence
that permits highly accurate extrapolation to the infinite-P limit.

The extrapolation of the path-integral results to the infinite-P
limit is carried out by the enhanced same-path extrapolation
(ESPE) approach,58 which involves fitting the TT-FPI partition
function values for the highest three available values ofP (we
usePmax, Pmax/2, andPmax/3, wherePmax ranged from 18 at high
T to 90 at 300 K) to the asymptotic behavior

whereC2(T) andC3(T) are fitting parameters, andQESPE(T) is
the final extrapolated value of the partition function at temper-
atureT.

3. Computational Details
The potential energy surface (PES) used for the present set

of calculations is the second of the two surfaces presented by
Koput, Carter, and Handy (i.e., the fit presented in Table 3 of
their paper,23 which is the same surface that was used for their
eigenvalue calculations). This PES is the same as the one used
in our previous study31 of H2O2. The functional form used for
this fit does not account for the full permutational symmetry of
the molecule; it is symmetric with respect to the exchange of the
two OH groups, but not with respect to exchanges of just the
two H atoms, nor with respect to exchanges of just the two O
atoms. The symmetry numberσsym for H2O2, D2O2, and H2

18O2

is 2 and for HOOD, H18OOH, D18OOH, and H18OOD is 1.
The masses of H, D, O, and18O are assumed to be

1.00782503, 2.01410178, 15.9949146, and 17.999160 amu,
respectively. The zero of energy is at the minimum of the
potential, which occurs for the configuration withROH )
0.96265 Å (whereRxy is the distance fromx to y), ROO )
1.45248 Å, HOO angles of 99.906°, and a dihedral angle of

112.456°. The value of the partition function depends on the
zero of energy, which is often placed at the ground state.
However, to calculate thermodynamic functions such as enthalpy
of reaction or free energy of reaction from a potential energy
surface, it is necessary to also calculate or include the zero-
point energy, and therefore we calculate partition functions with
the zero of energy at the equilibrium structure of the molecule,
and this is the zero of energy used in the present article.

The numerical methods used for the TT-FPI calculations done
in this paper are the same as in our previous work31 on H2O2,
and we limit ourselves to a few remarks. The calculations are
performed in mass-scaled Jacobi coordinates, and the center-
of-mass motion is removed. The path centroids are importance
sampled using our recently presented approach31 that employs
independent ziggurat sampling59,60for six chosen coordinatess
three Jacobi vector magnitudes and three Jacobi angles. Tight
optimization of the domain-boundary parameters would yield
negligible savings in computer time; therefore, conservative
values are used. The importance-function width parameters used
are the same as in our previous work,31 and the importance-
function center parameters are again taken to be the values at
the equilibrium configuration. Because the coordinates used in
the calculations depend on the masses, the numerical values of
the center parameters also vary. The final parameters used in
calculating the converged path-integral values forQTT-FPI

[P] (T)
for the various isotopomers of H2O2 are given in Appendix 1
of Supporting Information. The classical (P ) 1) results for
any isotopolog may be obtained from the previous results for
H2O2 via a simple mass-factor rescaling

If desired, all vibrational-rotational partition functions,Q(T),
in this paper could be converted to standard-state free energies,
G°T, by

where R is the gas constant,Q°trans(T) is the standard-state
translational partition function, andNA is Avogadro’s number.
Similarly, other thermodynamic functions could be obtained
from Q(T) by standard formulas. However we shall carry out
the comparisons in terms ofQ(T) rather thanG°T or other
thermodynamic functions.

4. Approximation Methods

4. A. Harmonic Approximation. The harmonic oscillator-
separable rotation approximation to the vibrational-rotational
partition function is

where Qrot is the rotational partition function,Q̃HO is the
harmonic oscillator (HO) approximation with the zero of energy
temporarily at the ground state, given by

ωm is the harmonic vibrational frequency of modem, F is the

Qma′mb′mc′md′
P)1 (T) )

Qmambmcmd

P)1 (T)(ma′mb′mc′md′
mambmcmd

)3/2(ma + mb + mc + md

ma′ + mb′ + mc′ + md′) (4)

GT° ) -RT ln
Qtrans° (T)Qint(T)

NA
(5)

Q ) Qrot e-âE0
HO

Q̃HO (6)

Q̃HO ) ∏
m)1

F 1

1 - e-pâωm

(7)

A[x(s)] ) ∫0

âp
ds(µ2(dx

dt )2
+ V(x)) (2)

QTT-FPI
[P] (T) ) QESPE(T) +

C2(T)

P2
+

C3(T)

P3
(3)
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number of vibrational modes (six for all applications in the
present article), andE0

HO is the harmonic zero-point energy
(ZPE) given by

Another approximation is achieved by replacing the termE0
HO

in eq 6 with the accurate ZPE. This method is referred to as
HO-Z, the zero-point-corrected harmonic oscillator approxima-
tion.

Note that the standard HO and classical (CHO) approxima-
tions are defined to include the harmonic approximation at only
the one deepest minimum of the potential; this is a reasonable
approximation for molecules such as ethane where, even though
the torsion has three minima, they are quantum mechanically
indistinguishable, and thus the quantum harmonic oscillator
approximation correctly includes only one of them, but it is
not reasonable for cases such as hydrogen peroxide where there
is more than one contributing minimum. In such cases, a
multiconformer (MC)-harmonic oscillator (HO)-rigid rotator
(RR) approximation will be employed

whereUi denotes the difference between the energy of minimum
i and the global minimum. (One could also define a classical
version (MC-CHO-RR).) The sum in eq 9 includes only
distinguishable minima; thus, for example, ethane and methanol
would each have only one term because rotation of the methyl
group leads to indistinguishable structures, whereas CH2DOH
would have three terms in eq 9. H2O2 has two isoenergetic
distinguishable minima (they are stereoisomers) in the torsion
coordinate, so the MC-HO-RR partition function is a factor of
2 larger than the HO-RR partition function.

The rotational partition function is evaluated in the quantum
mechanical, symmetric top, rigid-rotor (RR) approximation, as
discussed elsewhere.31 (Alternative approximations to the
rotational partition function change the result by only 2% or
less, as shown in Appendix 2 of the Supporting Information.)

4. B. The Conventional Pitzer-Gwinn Approximation.
The Pitzer-Gwinn3,13,14,16,19(PG) approximation can be used
with the harmonic estimate of the zero-point energy (ZPE) to
approximate the value of the anharmonic quantum mechanical
vibrational partition function

whereQCM is the anharmonic classical vibrational-rotational
partition function, which we calculate by settingP ) 1 in the
path-integral algorithm, andQCHO is the classical mechanical
harmonic oscillator approximation to the vibrational partition
function, given by

It is interesting to also consider a nonstandard version of the
PG approximation. In this method, we employ the accurate value
of the ZPE, calledE0, yielding

This approximation is interesting becauseE0 can be calculated
by quantum Monte Carlo methods20,32 (or approximated in a
variety of ways). Tables 1 and 2 give the harmonic vibrational
frequencies and zero-point energies needed for the approximate
calculations and compares them to fundamental23,24,61frequen-
cies. (The frequencies for D2O2 and HOOD are in good
agreement with available62,63 experiments.)

When more than one minimum contributes significantly to
the partition function, multiconformer analogues of eqs 10 and
12 could be used, whereQHO is replaced by a weighted sum of
quantum harmonic oscillators for all the distinguishable minima
andQCHO is replaced by an analogous sum of classical partition
functions. Note that the latter sum is not a strictly classical
expression because the number of terms in the sum is governed
by quantum mechanical consequences of symmetry. If all the
contributing minima have identicalQHO-RR, as in the present
set of applications, the single- and multiconformer formulas
would yield identical results, so we will not consider multicon-
former PG approximations further here.

4. C. Generalized Pitzer-Gwinn Approximations. We will
consider a very general extension of the Pitzer-Gwinn ap-

TABLE 1: Calculated Fundamentals and Harmonic Normal-Mode Frequenciesa for H 18OOH, H2
18O2, HOOD, D18OOH,

H18OOD, and D2O2

H18OOH H2
18O2 HOOD D18OOH H18OOD D2O2

modeb harm.c harm.c fund.d harm.c fund.d harm.c harm.c harm.c fund.d

ν1 3795.6 3795.1 3611.0 2774.9 2675.2 2757.0 2774.9 2772.6 2676.3
ν2 1434.2 1431.1 1391.5 1388.0 1349.5 1385.2 1384.6 1052.8 1027.6
ν3 885.2 859.0 825.7 909.6 876.5 883.3 884.2 908.6 877.4
ν4 381.2 380.4 369.7 334.7 313.9 333.9 333.9 279.4 254.2
ν5 3808.5 3796.2 3613.5 3808.5 3622.9 3808.5 3795.6 2777.1 2675.6
ν6 1326.4 1322.8 1262.5 1014.1 982.3 1010.3 1009.7 983.8 948.2

a As usual, we tabulateωm/2πc in cm-1 rather thanωm in s-1. b The vibrational modes are symmetric (ν1) and antisymmetric (ν5) OH stretches,
symmetric (ν2) and antisymmetric (ν6) HOO bends, symmetric OO stretch (ν3), and the HOOH torsion (ν4). c The harmonic normal-mode frequencies
as calculated using the POLYRATE v9.3 program.68 d The calculated fundamentals as obtained by Koput, Carter, and Handy using their H2O2

potential energy surface.24

TABLE 2: Comparison of Zero-Point Energiesa from
Various Sources

system harmonic from fundamentalsb accurate

H2O2 5838.4 5580.1 5726.1b

H18OOH 5815.5 - 5704.1c

H2
18O2 5792.3 5537.0 5681.7b

HOOD 5114.9 4910.2 5028.8b

D18OOH 5089.0 - 5003.5c

H18OOD 5091.5 - 5006.0c

D2O2 4387.2 4229.7 4326.2b

a In cm-1. b From the variational results of ref 61.c Present estimate.

QCHO ) ∏
m)1

F 1

pâωm

(11)

QPG-Z ) e-âE0QCM( Q̃HO

QCHO) (12)

E0
HO )

1

2
p∑

m)1

F

ωm (8)

QMC-HO-RR ) ∑
i

exp(-âUi)Qi
HO-RR (9)

QPG ) e-âE0
HO

QCM( Q̃HO

QCHO) (10)
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proximation of the form

where GPG denotes generalized Pitzer-Gwinn, Q[P](T) is the
path-integral partition function for some finiteP, andQref,P(T)
andQref,P)∞(T) are the accurate quantum mechanical partition
functions of some reference potential for this same value ofP
and for the infinite-P limit, respectively. If we choose our
reference potential to be a sum of one-dimensional harmonic
oscillators and setP ) 1, we obtain the original PG approxima-
tion, and for any reasonable choice of reference potential, eq
13 converges to the accurate result asP is increased. For the
rest of this paper, we will restrict consideration to reference
potentials that are sums of harmonic oscillator functions, but
we pause to remark that more general reference potentials, which
partially account either for anharmonicity and/or intermode
coupling, may prove to be more effective and would be a good
subject for future investigation.

The finite-P quantum partition function for a harmonic
oscillator can be expressed as64

where

and

The finite-P quantum partition function for a harmonic oscillator
can also be expressed as65

where

If we use a reference potential of harmonic oscillators with
frequenciesω evaluated from a Hessian at the global minimum
of the potential, we shall refer to the results of eq 13 simply as
GPG[P]. However, because the values of partition functions are
very sensitive to the zero-point energy, we may be able to
achieve higher accuracy for lowP, if the reference function
has a zero-point energy that is as close as possible to that of
the accurate potential. One obvious way to achieve this
(assuming the accurate ZPE is known) is simply to scale all of
the harmonic frequencies using a single scale factor, i.e.,

We will refer to this method as GPG-Z[P] where Z indicates
frequency scaling based on the accurate zero-point energy.

4. D. Other Approximations. If we are not fortunate enough
to know the accurate ZPE, we can use a known accurate value
of Q(To) at some temperatureTo to estimate an optimal scaling
factor. This is done by numerically finding a scaling factorfo
that makes eq 13 hold exactly forT ) To. In theTo f 0 limit,
the optimal frequency-scaling factor will equalE0/E0

HO, and
even at fairly high temperatures it will be close to this value.
Because the path-integral calculations at moderateT values are
quite affordable, performing a well converged calculation at one
such temperature to estimate an approximate ZPE for use in
GPG[P] calculations at lower temperatures can provide a
considerable reduction in computational cost. This option is an
interesting one for future study.

If one knows some of the higher-energy levels, one can define
mixed methods that take advantage of this. This is illustrated
in detail in Appendix 3 of the Supporting Information where
we show how one can do better if one knows all the accurate
fundamentals.

5. Results
5. A. Harmonic and Conventional PG Methods.Table 3

contains for several temperatures the values ofQESPE(T) and
the 2σ statistical uncertainties, whereσ denotes standard
deviation, for the isotopomers considered here. (Intermediate
results of these calculations are presented in Appendix 1 of the
Supporting Information.) The small magnitudes of the 2σ
statistical uncertainties given in Table 1 result partly from the
highly effective importance-sampling scheme31 and partly
because the calculations used a large number [(1× 107)-(2 ×
108)] of Monte Carlo samples.

Table 4 compares partition functions calculated with the MC-
HO-RR approximation (with and without the accurate zero-point
energy correction) and the two variants of the conventional PG

TABLE 3: TT-FPI-ESPE Partition Functions and 2 σ Statistical Uncertainties for Various Temperatures

system 300 K 400 K 600 K 800 K

H18OOH (7.018( 0.062)× 10-9 (1.2081( 0.0013)× 10-5 (3.0300( 0.0025)× 10-2 2.11323( 0.00091
H2

18O2 (4.157( 0.037)× 10-9 (6.9690( 0.0075)× 10-6 (1.7078( 0.0014)× 10-2 1.18068( 0.00052
HOOD (2.322( 0.011)× 10-7 (1.8128( 0.0013)× 10-4 0.21220( 0.00014 10.2992( 0.0037
D18OOH (2.756( 0.013)× 10-7 (2.0974( 0.0015)× 10-4 (2.3934( 0.0015)× 10-1 11.5059( 0.0041
H18OOD (2.735( 0.013)× 10-7 (2.0868( 0.0015)× 10-4 (2.3870( 0.0015)× 10-1 11.4862( 0.0041
D2O2 (4.509( 0.011)× 10-6 (1.56538( 0.00070)× 10-3 0.83431( 0.00042 27.9717( 0.0079

system 1000 K 1500 K 2400 K

H18OOH 33.990( 0.026 2433.42( 1.55 165350( 170
H2

18O2 18.899( 0.015 1346.19( 0.86 91189( 84
HOOD 135.071( 0.091 7603.41( 4.04 449545( 368
D18OOH 150.06( 0.10 8396.14( 4.63 493864( 595
H18OOD 149.91( 0.10 8389.07( 4.38 494716( 423
D2O2 297.77( 0.17 13102.6( 6.41 671681( 624

QGPG[P](T) )
Qref,P)∞(T)

Qref,P(T)
Q[P](T) (13)

QHO,P(T) ) fP/2

fP - 1
(14)

f ) 1 + R2

2
+ (R2)x4 + R2 (15)

R ) pâω
P

(16)

QHO,P(T) ) 1

[(x1 + R2 + R)P - (x1 + R2 - R)P]
(17)

R ) pâω
2P

(18)

ωi
Z )

E0

E0
HO

ωi (19)
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approximation to the converged path-integral values. The
MC-HO-RR approximation yields results that are systematically
much too low, with errors ranging from 19% to 46%. The
MC-HO-Z-RR approximation has errors ranging from 7% to
16%. The results for the PG-Z values are quite good, with errors
of only 1% to 2% at 2400 K and 3.5% to 7% at 300 K. The
errors are inversely proportional to the number of D atoms and,
for a given number of D atoms, are inversely proportional to
the number of18O atoms; this is consistent with the expectation
of decreased quantum effects for heavier isotopes. The PG
results are systematically too low (as expected because the
harmonic ZPE overestimates the true ZPE), with errors ranging
from 2.7% for D2O2 at 2400 K to 37.7% for H2O2 at 300 K,
but the method still performs significantly better than the
MC-HO-RR method.

We see that even where the errors of the approximate partition
functions are large, they are often systematic; thus, it is
interesting to examine the isotope effects. Table 5 shows values
for the isotope effect, that is, the ratio ofQ for H2O2 to Q for
some isotopic molecule (QH2O2/Qisotopically substituted species). Because
the PG approximation only includes quantum effects at the
harmonic level, and isotope effects are an inherently QM
property, it yields isotope ratios that are identical to those of
the HO-RR approximation. This may not be immediately
obvious, but it can be readily shown by using eq 4 and the
Teller-Redlich product rule37,66,67

where Ix, Iy, and Iz are the principle moments of inertia. The
table includes the harmonic approximation, the HO-Z ap-
proximation, and the accurate path-integral results. It is interest-
ing to see that the harmonic isotope effect for any species with
one deuterium atom is off by 10-11% at 300 K. The isotope
effect for the only species containing two deuterium atoms is
off by 19% at 300 K, whereas any species without deuterium

is only off by 1% at 300 K. At 2400 K, there is a similar trend
although the errors are smaller and range from 0.2% to 2%.
The HO-Z isotope effects are substantially more accurate than
those of the HO calculations with the data for species with zero
D atoms agreeing with accurate results within the statistical
uncertainties, and results for species with one and two D atoms
being accurate to within 1.7% and 3.1%, respectively.

B. Generalized Pitzer-Gwinn Approximation Results. In
Table 6, we consider the convergence with respect toP of the
GPG-Z[P] scheme for partition functions of H2O2 at 300 Ks
the lowest temperature and the lightest isotopomer considered
here, and hence the hardest case to converge. The ESPE
calculations were done withP ) 30, 45, and 90 and involved
an extrapolation correction of about 3.2%. The GPG[P] calcula-
tions are observed to converge rapidly and monotonically from
above, with theP ) 30 value already agreeing with the accurate
result within the statistical uncertainties. The GPG-Z[P] calcula-
tions, which employ frequencies scaled to reproduce the accurate
ZPE of 5726.1 cm-1, display nonmonotonic convergence but
provide outstanding accuracy for very low (2-5) P values.
Figure 1 compares the correction factors, i.e.,Qref,[P)∞](T)/
Qref,[P](T), plotted as a ratio of the accurate value, for the two
choices of reference potentials. The asymptotic convergence rate
of theQ[P](T) with increasingP is well characterized by using
the unscaled harmonic frequencies, presumably because these
characterize well the contribution from the stiffest, and thus
slowest converging, region of the surface. The accurate ZPE is
about 112.3 cm-1 below the harmonic value, due to anharmo-
nicity effects that converge slowly withP; thus, at lowP the
GPG[P] scheme significantly underestimates the accurate parti-
tion function. By rescaling the frequencies to reproduce the
accurate ZPE, the GPG-Z[P] scheme yields dramatically better
results for lowP values, withP ) 1 giving errors of only∼3%
and theP ) 3, 4, and 5 results, where theQ[P](T) calculations
begin to accurately treat the intermode coupling and low-
frequency motions not represented by the reference potential,
all being accurate to within 1%. For intermediate values ofP,
the path-integral calculations begin to account for significant
portions of the anharmonicity in the high-frequency motions
that the ZPE correction also approximately corrects for, and
this double correction results in the GPG-Z[P] scheme predicting
partition function estimates that are too high by as much as
∼3-4%. For largerP values, both schemes converge to the
accurate result, but the GPG[P] scheme converges faster and is
more accurate forP > 10.

In Tables 7 and 8, we consider partition functions for H2O2

and D2O2 calculated with the GPG-Z[P] scheme forP in the
range of 1-4. The full range of temperatures is studied, and
mean unsigned deviations (MUDs) between the accurate and
approximate results over these seven temperatures are tabulated.
TheP ) 1 results have an accuracy comparable to those of the
PG-Z scheme and have MUDs from the accurate results of about
3-4%. Moving from P ) 1 to P ) 2 results in the MUDs
being reduced by more than a factor of 2, to within 1.3-2.0%.
TheP ) 3 results are dramatically better than theP ) 2 results,
with the T g 800 K data now being converged to within
statistical uncertainties, having MUDs ranging from 0.4-0.9%.
The P ) 4 results have MUDs of 0.2-0.4% and provide
excellent accuracy at all temperatures. As already mentioned,
further increases inP can result in lower accuracy as the accurate
path-integrals begin to converge anharmonic contributions that
are already heuristically accounted for by the frequency scaling
to reproduce the accurate ZPE, but in the largeP limit the results
converge to the accurate values.

TABLE 4: Ratios of Approximate Partition Functions to the
Accurate Path-Integral Results for Six Isotopologs at
Various Temperatures

T(K) system HO-RR MC-HO-RR MC-HO-Z-RR PG PG-Z

300 H2O2 0.269 0.540 0.925 0.623 1.069
300 H18OOH 0.271 0.543 0.926 0.627 1.070
300 H2

18O2 0.272 0.543 0.923 0.627 1.066
300 HOOD 0.301 0.601 0.908 0.694 1.048
300 D18OOH 0.301 0.603 0.909 0.696 1.051
300 H18OOD 0.302 0.603 0.909 0.696 1.049
300 D2O2 0.335 0.669 0.897 0.772 1.035
800 H2O2 0.363 0.727 0.890 0.852 1.042
800 H18OOH 0.364 0.727 0.889 0.853 1.042
800 H2

18O2 0.364 0.728 0.888 0.856 1.041
800 HOOD 0.378 0.755 0.882 0.884 1.033
800 D18OOH 0.377 0.755 0.881 0.887 1.032
800 H18OOD 0.377 0.756 0.881 0.887 1.032
800 D2O2 0.393 0.784 0.875 0.918 1.024
2400 H2O2 0.398 0.797 0.852 0.952 1.020
2400 H18OOH 0.398 0.795 0.850 0.958 1.020
2400 H2

18O2 0.398 0.795 0.850 0.953 1.019
2400 HOOD 0.402 0.804 0.847 0.964 1.016
2400 D18OOH 0.403 0.805 0.847 0.966 1.016
2400 H18OOD 0.402 0.804 0.846 0.964 1.015
2400 D2O2 0.406 0.813 0.843 0.973 1.010

∏
j)1

F ωj

ω′j
) (∑i

mi

∑
i

m′i)( IxIyIz

I′xI′yI′z)1/2

∏
i

#atoms(m′i

mi )3/2

(20)
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In Table 9, we consider the H2O2/D2O2 isotope effect, which
is the hardest test case, calculated using the GPG-Z[P] scheme
for P in the range of 1-4. As in the case of the harmonic results,
the isotope effects benefit from cancellation of systematic errors
in the absolute partition functions and even theP ) 1 results

have MUDs of 1% or below. The results forP ) 2-4 are all
very close to the ESPE benchmarks.

In Table 10, we consider estimates of the accurate ZPE of
H2O2, obtained using various values ofT andP using the GPG-
Z[P] scheme. Specifically, we determine the ZPE we would
need to scale the harmonic frequencies for the GPG-Z[P] method
to reproduce theQESPE(T) result for a given value ofT andP.

TABLE 5: Accurate Path-Integral Results for QH2O2/Qisotopically substituted speciesand Percentage Errors in These Isotope Effects
When They Are Calculated by the HO and HO-Z Approximations at Various Temperaturesa

T(K) H18OOH H2
18O2 HOOD D18OOH H18OOD D2O2

Accurate
300 4.27(-1) 7.20(-1) 1.29(-2) 1.09(-2) 1.10(-2) 6.64(-4)
400 4.37(-1) 7.57(-1) 2.91(-2) 2.51(-2) 2.53(-2) 3.37(-3)
600 4.46(-1) 7.91(-1) 6.36(-2) 5.64(-2) 5.66(-2) 1.62(-2)
800 4.49(-1) 8.04(-1) 9.22(-2) 8.25(-2) 8.27(-2) 3.40(-2)
1000 4.52(-1) 8.12(-1) 1.14(-1) 1.02(-1) 1.02(-1) 5.16(-2)
1500 4.54(-1) 8.21(-1) 1.45(-1) 1.32(-1) 1.32(-1) 8.43(-2)
2400 4.55(-1) 8.24(-1) 1.67(-1) 1.52(-1) 1.52(-1) 1.12(-1)

% Error in HO
300 -0.6 -0.6 -10.2 -10.6 -10.6 -19.4
400 -0.4 -0.5 -7.9 -8.0 -8.0 -14.8
600 -0.2 -0.4 -5.0 -5.2 -5.2 -9.9
800 -0.1 -0.2 -3.8 -3.7 -3.8 -7.3
1000 -0.1 -0.2 -3.0 -3.0 -3.1 -5.8
1500 -0.1 -0.1 -1.9 -1.9 -2.0 -3.7
2400 0.2 0.2 -0.9 -1.0 -0.9 -2.0

% Error in HO-Z
300 -0.2 0.2 1.8 1.6 1.7 3.1
400 -0.1 0.1 1.2 1.3 1.3 2.4
600 0.0 0.0 1.1 1.1 1.1 1.9
800 0.1 0.1 0.9 1.0 0.9 1.7
1000 0.0 0.1 0.7 0.8 0.7 1.4
1500 0.0 0.1 0.6 0.7 0.6 1.1
2400 0.2 0.3 0.7 0.6 0.7 1.1

a Powers of 10 are in parentheses.

TABLE 6: Accurate Path-Integral and Generalized PG
Path-Integral Results with Two Choices of the Reference
Potential for the H2O2 Partition Function at T ) 300 Ka

P Q[P](T) QGPG[P](T) QGPG-Z[P](T)

1 1.903(-2)b 1.866(-9) 2.869(-9)
2 1.563(-4) 2.046(-9) 2.906(-9)
3 9.423(-6) 2.188(-9) 2.926(-9)
4 1.486(-6) 2.321(-9) 2.961(-9)
5 4.055(-7) 2.325(-9) 2.983(-9)
6 1.588(-7) 2.544(-9) 3.032(-9)
7 7.824(-8) 2.629(-9) 3.055(-9)
8 4.522(-8) 2.683(-9) 3.055(-9)
9 2.971(-8) 2.750(-9) 3.077(-9)
10 2.123(-8) 2.795(-9) 3.084(-9)
15 8.259(-9) 2.933(-9) 3.095(-9)
20 5.510(-9) 2.973(-9) 3.074(-9)
30 3.984(-9) 2.991(-9) 3.039(-9)
45 3.409(-9) 2.993(-9) 3.015(-9)
90 3.092(-9) 2.992(-9) 2.997(-9)

a The converged result (obtained from an ESPE calculation) is (2.995
( 0.013)× 10-9. b Powers of 10 are in parentheses.

TABLE 7: Ratios of GPG-Z[ P] Partition Functions for
H2O2 to the Accurate Results

T GPG-Z[1] GPG-Z[2] GPG-Z[3] GPG-Z[4]

300 0.958 0.970 0.977 0.989
400 0.954 0.968 0.980 0.993
600 0.955 0.974 0.990 1.002
800 0.956 0.981 0.997 1.004
1000 0.957 0.984 0.998 1.002
1500 0.963 0.991 0.997 1.001
2400 0.971 0.994 0.999 1.000
MUDa 0.041 0.020 0.009 0.004

a Mean unsigned deviation from unity.

TABLE 8: Ratios of GPG-Z[ P] Partition Functions for D 2O2
to the Accurate Results

T GPG-Z[1] GPG-Z[2] GPG-Z[3] GPG-Z[4]

300 0.959 0.974 0.986 0.998
400 0.961 0.979 0.992 1.002
600 0.965 0.986 0.998 1.003
800 0.968 0.990 0.999 1.002
1000 0.971 0.992 0.999 1.000
1500 0.975 0.994 0.998 0.999
2400 0.981 0.995 0.998 0.999
MUDa 0.031 0.013 0.004 0.002

a Mean unsigned deviation from unity.

Figure 1. Ratio of the correction factors,Qref,P)∞/Qref,P, to the accurate
values for the GPG[P] (harmonic reference potential) and GPG-Z[P]
(scaled harmonic reference potential) schemes as a function ofP at T
) 300 K.
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We provide uncertainty estimates by considering the two cases
where theQESPE(T) andQ[P](T) values are shifted in opposite
directions by their 2σ statistical uncertainties. AsT f 0, the
results will all converge to the accurate ZPE. AsP is increased,
for finite T, the ZPE estimates all increase and presumably
become close to the harmonic ZPE, but for small values ofP,
the values will lie closer to the accurate ZPE for the reasons
already discussed above. For the present system,P ) 3 yields
the best estimates. Even at moderately high temperatures, the
ZPE estimates are quite good and may prove useful for use in
GPG-Z[P] calculations at lower temperature (where the calcula-
tions are significantly more expensive) if more accurate means
of estimating the ZPE are not feasible.

6. Conclusions

This paper presents converged accurate quantal rovibrational
partition functions for six isotopically substituted hydrogen
peroxides. The calculations are carried out by the TT-FPI-ESPE
path-integral method, and the 2σ statistical errors are only about
0.1% from 400 to 2400 K. At the lowest temperature calculated
(300 K), where the calculations are the most difficult, the
statistical error is no more than 0.9% for all species examined
here.

These well-converged results allow us to compare ap-
proximate methods such as the harmonic oscillator and Pitzer-
Gwinn (PG) methods. At 300 K, we find that the error for the
PG result when compared to the accurate path-integral results
ranges from 23 to 38%, and at 2400 K the percent error ranges
from 2 to 5%. This is a large improvement over the errors in
the multiconfiguration harmonic approximation, which ranges
from about 46% at 300 K to 20% at 2400 K.

For isotope effects, the harmonic approximation errors at 300
K ranged from 10 to 19% for those systems with deuterium
and are about 1% for those systems without a deuterium atom.
At the highest temperature considered, the errors for all species
were at most 2%.

We presented a general scheme for quantum mechanical
generalizations of the Pitzer-Gwinn approximation that may
be systematically extended until they converge to the accurate

result by increasing the number,P, of path expansion parameters
(discretized points in the present set of calculations) used. Those
schemes that account for the zero-point energy (ZPE) accurately
yield well-converged results withP in the range of 2-4 even
at the lowest temperatures considered. When no ZPE estimates
are available, and only the harmonic reference potential is
considered, the GPG[P] scheme still converges to the accurate
result much more rapidly than the TT-FPI calculations do. These
methods can also be used to get reasonable and affordable
approximations of the accurate zero-point energy. More refined
reference potentials than the simple harmonic ones considered
here may prove substantially more effective for both the
calculation of accurate partition functions and ZPE estimates;
this is an enticing topic for future research.

In addition to the tests reported in this paper, the converged
results presented here should be useful as benchmarks for testing
all kinds of future approximations. They should be especially
useful because of the high precision and wide temperature range
and because there are so few converged partition function
calculations available30 for real molecules with four or more
atoms; in fact, this paper increases the number of cases from
two30,31 to eight.
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